Problem 1.21

By reduction of order, find the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{4} \sin x$ after observing that $y_{1}=x^{2}$ is a solution of the associated homogeneous equation.

Solution

With the solution to the associated homogeneous equation in hand, we can find the general solution with reduction of order-also known as multiplicative substitution.

$$
\begin{equation*}
y(x)=y_{1} u(x)=x^{2} u(x) \tag{1}
\end{equation*}
$$

Find the derivatives of y in terms of the new variable u.

$$
\begin{aligned}
y^{\prime}(x) & =2 x u(x)+x^{2} u^{\prime}(x) \\
y^{\prime \prime}(x) & =2 u(x)+2 x u^{\prime}(x)+2 x u^{\prime}(x)+x^{2} u^{\prime \prime}(x)=2 u(x)+4 x u^{\prime}(x)+x^{2} u^{\prime \prime}(x)
\end{aligned}
$$

Plug these expressions into the ODE now.

$$
x^{2}\left(2 u+4 x u^{\prime}+x^{2} u^{\prime \prime}\right)-4 x\left(2 x u+x^{2} u^{\prime}\right)+6 x^{2} u=x^{4} \sin x
$$

Expand the terms on the left side.

$$
2 x^{2} u+4 x^{3} u^{\prime}+x^{4} u^{\prime \prime}-8 x^{2} u-4 x^{3} u^{\prime}+6 x^{2} u=x^{4} \sin x
$$

Combine like-terms.

$$
x^{4} u^{\prime \prime}=x^{4} \sin x
$$

Divide both sides by x^{4}.

$$
u^{\prime \prime}=\sin x
$$

Integrate both sides with respect to x.

$$
u^{\prime}=-\cos x+C_{1}
$$

Integrate both sides with respect to x again.

$$
u(x)=-\sin x+C_{1} x+C_{2}
$$

Now that we have $u(x)$, we can obtain $y(x)$ by multiplying the result by x^{2} as equation (1) indicates.

$$
y(x)=-x^{2} \sin x+C_{1} x^{3}+C_{2} x^{2}
$$

This is the general solution to the ODE. Note that it includes the solution, $y_{1}=x^{2}$, we started out with.

